Nature

Observation of fractional edge excitations in nanographene spin chains

  • 1.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Laughlin, R. B. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13, 3398–3409 (1976).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Kitaev, A. Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    MathSciNet 
    Article 

    Google Scholar
     

  • 7.

    Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Kennedy, T. Exact diagonalisations of open spin-1 chains. J. Phys. Condens. Matter 2, 5737–5745 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    White, S. R. & Huse, D. A. Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain. Phys. Rev. B 48, 3844–3852 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Pollmann, F., Berg, E., Turner, A. M. & Oshikawa, M. Symmetry protection of topological phases in one-dimensional quantum spin systems. Phys. Rev. B 85, 075125 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 12.

    Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Wei, T.-C., Affleck, I. & Raussendorf, R. Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation. Phys. Rev. A 86, 032328 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Bethe, H. Zur Theorie der Metalle. Z. Physik 71, 205–226 (1931).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • 15.

    Renard, J.-P., Regnault, L.-P. & Verdaguer, M. in Magnetism: Molecules to Materials I: Models and Experiments (eds. Miller, J. S. & Drillon, M.) 49–93 (John Wiley & Sons, 2001).

  • 16.

    Soe, W.-H., Manzano, C., De Sarkar, A., Chandrasekhar, N. & Joachim, C. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys. Rev. Lett. 102, 176102 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Choi, D.-J. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Toskovic, R. et al. Atomic spin-chain realization of a model for quantum criticality. Nat. Phys. 12, 656–660 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Yang, K. et al. Probing resonating valence bond states in artificial quantum magnets. Nat. Commun. 12, 993 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Delgado, F., Batista, C. D. & Fernández-Rossier, J. Local probe of fractional edge states of S = 1 Heisenberg spin chains. Phys. Rev. Lett. 111, 167201 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Fernández-Rossier, J. & Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 24.

    Clar, E. & Stewart, D. G. Aromatic hydrocarbons. LXV. Triangulene derivatives1. J. Am. Chem. Soc. 75, 2667–2672 (1953).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Goto, K. et al. A stable neutral hydrocarbon radical:  synthesis, crystal structure, and physical properties of 2,5,8-tri-tert-butyl-phenalenyl. J. Am. Chem. Soc. 121, 1619–1620 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Inoue, J. et al. The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J. Am. Chem. Soc. 123, 12702–12703 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Mishra, S. et al. Synthesis and characterization of π-extended triangulene. J. Am. Chem. Soc. 141, 10621–10625 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Su, J. et al. Atomically precise bottom-up synthesis of π-extended [5]triangulene. Sci. Adv. 5, eaav7717 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Mishra, S. et al. Synthesis and characterization of [7]triangulene. Nanoscale 13, 1624–1628 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Mishra, S. et al. Collective all-carbon magnetism in triangulene dimers. Angew. Chem. Int. Ed. 59, 12041–12047 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Lado, J. L. & Fernández-Rossier, J. Magnetic edge anisotropy in graphenelike honeycomb crystals. Phys. Rev. Lett. 113, 027203 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Ternes, M., Heinrich, A. J. & Schneider, W.-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys. Condens. Matter 21, 053001 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Li, J. et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 10, 200 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 35.

    Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Ortiz, R. & Fernández-Rossier, J. Probing local moments in nanographenes with electron tunneling spectroscopy. Progr. Surf. Sci. 95, 100595 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Oberg, J. C. et al. Control of single-spin magnetic anisotropy by exchange coupling. Nat. Nanotechnol. 9, 64–68 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Jacob, D., Ortiz, R. & Fernández-Rossier, J. Renormalization of spin excitations and Kondo effect in open-shell nanographenes. Phys. Rev. B 104, 075404 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Hieulle et al. [PLACEHOLDER]. Angew. Chem. Int. Ed. Engl.https://doi.org/10.1002/anie202108301 (2021).

  • 43.

    Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 46.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 48.

    Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Wilhelm, J., Del Ben, M. & Hutter, J. GW in the Gaussian and plane waves scheme with application to linear acenes. J. Chem. Theory Comput. 12, 3623–3635 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Kharche, N. & Meunier, V. Width and crystal orientation dependent band gap renormalization in substrate-supported graphene nanoribbons. J. Phys. Chem. Lett. 7, 1526–1533 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 53.

    Yakutovich, A. V. et al. AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 188, 110165 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Tran, V.-T., Saint-Martin, J., Dollfus, P. & Volz, S. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons. AIP Adv. 7, 075212 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 56.

    Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software library for tensor network calculations. Preprint at https://arxiv.org/abs/2007.14822 (2020).

  • 57.

    Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains. SciPost Phys. 2, 003 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    Weinberg, P. & Bukov, M. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins. SciPost Phys. 7, 020 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Fernández-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 60.

    Spinelli, A., Bryant, B., Delgado, F., Fernández-Rossier, J. & Otte, A. F. Imaging of spin waves in atomically designed nanomagnets. Nat. Mater. 13, 782–785 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 29, 3035–3044 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Jacob, D. & Kurth, S. Many-body spectral functions from steady state density functional theory. Nano Lett. 18, 2086–2090 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Jacob, D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. J. Phys. Condens. Matter 30, 354003 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Jacob, D. & Fernández-Rossier, J. Competition between quantum spin tunneling and Kondo effect. Eur. Phys. J. B 89, 210 (2016).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    NASA expects vaccination mandates to have little impact on Artemis 1 preparations
    Scientists Gain Insights into the Ecology of Brazilian Fishing Jaguars
    ‘Squid Game’ success shines a light on how cheap it is to make TV shows outside the U.S.
    Some firms are putting shareholders above the long-term future of humanity: Ex-Unilever CEO
    When it comes to protecting our waterfronts, nature knows best

    Leave a Reply

    Your email address will not be published. Required fields are marked *